B Physics and Quarkonia at CMS

ICNFP 2014 Kolymbari, Crete 6 August 2014

CCC

0

Claudia-Elisabeth Wulz CMS Collaboration Institute of High Energy Physics, Vienna

10)

Selected recent results:

- CP-violating phase ϕ_s and decay width difference $\Delta\Gamma_s$ of B_s with B_s -> J/ $\psi \phi$ (1020) *CMS PAS BPH-13-012*
- Production cross sections
 - J/ψ and ψ (2S) prompt double-differential

CMS PAS BPH-14-001

- Polarization
 - J/ψ, ψ(2S), Υ(1S), Υ(2S), Υ(3S)

PLB 727 (2013) 381

PRL 110 (2013) 081802

All CMS public B physics results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

Weak phase from interference of direct decays and decays from mixing, and decay width difference of light and heavy B_s mass eigenstates:

Angular analysis

Time-dependent, angular analysis to disentangle CP-odd and CP-even final states:

- Measure decay angles $\Theta(\theta_T, \phi_T, \psi_T)$ and proper decay length *ct* of B_s

 $O_i(\alpha, ct) = N_i e^{-ct/c\tau} \left[a_i \cosh(\frac{1}{2}\Delta\Gamma_s ct) + b_i \sinh(\frac{1}{2}\Delta\Gamma_s ct) + c_i \cos(\Delta m_s ct) + d_i \sin(\Delta m_s ct) \right]$

α parameter set: $\Delta \Gamma_s$, ϕ_s , cτ, $|A_0|^2$, $|A_{||}|^2$, $|A_T|^2$, $|A_S|^2$, $\delta_{||}$, δ_T , δ_{ST} b_i and d_i depend on ϕ_s *PRD 87 (2013) 112010 - LHCb*

Extended maximum likelihood fit with signal model used to extract parameters.

C.-E. Wulz

Event selection and B_s reconstruction

Trigger: displaced J/ψ , optimized for b hadrons

- 2 muons with $p_T(\mu) > 4 \text{ GeV}, p_T(\mu\mu) > 6.9 \text{ GeV}$
- Mass window for $\mu\mu$: [2.9,3.3] GeV
- Common decay vertex, $L_{xy}/\sigma_{xy} > 3$, $d_{ca3D} < 0.5$ cm
- χ^2 vertex fit probability > 15%

Offline selection:

- $p_T(\mu^+)$, $p_T(\mu^-) > 4$ GeV, $\ln_{\mu} l < 2.1$
- Dimuons from common vertex from Kalman fit
- J/ψ mass constraint: $Im_{\mu+\mu}$ $M_{J/\psi}I < 150 \text{ MeV}$
- p_T(K⁺), p_T(K⁻) > 0.7 GeV
- ϕ mass constraint: $Im_{K^+K^-} M_{\phi}I < 10 \text{ MeV}$
- B_s (µµKK) reconstruction by combined kinematic and vertex fit:
- χ^2 vertex fit probability > 2%
- Mass within [5.24, 5.49] GeV
- Selected primary vertex in case of multiple primary vertices: closest to B_s

CMS PAS BPH-13-012

Background, efficiencies, resolution

Main background: non-prompt J/ψ from b hadrons Lifetime and angular resolution and efficiencies: from simulation

- Angular efficiency: modeled by 3D-function of decay angles
- Angular resolution: not in nominal fit, but included as systematic uncertainty
- Proper decay time efficiency: not in nominal fit, flat in fitting range [0.02,0.3] cm, variations included as systematic uncertainty
- Proper decay time resolution (70 fs or 21 μ m): per-event uncertainty from B_s vertex finding + scale factor $\kappa(c\tau)$ taking into account the difference with respect to the actual resolution

Flavor tagging

Flavor of B_s at production time determined by tagging e or μ from opposite side B and considering its charge

Tagging performance optimized by maximizing tagging power $P_{tag} = \varepsilon_{tag} (1-2\omega)^2$ separately for e and μ (ω ... mistag fraction)

 ϵ_{tag} measured from data, using channel B⁺ -> J/ ψ K⁺, and checked by simulation with B⁺ -> J/ ψ K⁺ and B_s -> J/ ψ K^{*0} events

	Muons	Electrons
Mistag fraction ω [%]	$30.7 \pm 0.4 \pm 0.7$	$34.8 \pm 0.3 \pm 1.0$
Tagging efficiency ϵ_{tag} [%]	$4.55 \pm 0.03 \pm 0.08$	$3.26 \pm 0.02 \pm 0.01$
Tagging power P _{tag} [%]	$0.68 \pm 0.03 \pm 0.05$	$0.30 \pm 0.02 \pm 0.04$

Combined average tagging performance: $\omega = (32.3 \pm 0.3)\%$, $\varepsilon_{tag} = (7.67 \pm 0.04)\%$, $P_{tag} = (0.97 \pm 0.03)\%$ *CMS PAS BPH-13-012*

Systematic uncertainties

Source of uncertainty	$ A_0 ^2$	$ A_S ^2$	$ A_{\perp} ^2$	$\Delta\Gamma_{\rm s} [{\rm ps}^{-1}]$	δ_{\parallel} [rad]	$\delta_{S\perp}$ [rad]	δ_{\perp} [rad]	$\phi_{\rm s}$ [rad]	<i>cτ</i> [μm]
Statistical uncertainty	0.0058	0.016	0.0077	0.0138	0.092	0.24	0.36	0.109	3.0
Angular efficiency	0.0060	0.008	0.0104	0.0021	0.674	0.14	0.66	0.016	0.8
$ \lambda $ as a free parameter	0.0001	0.005	0.0001	0.0003	0.002	0.01	0.03	0.015	-
Model bias	0.0008	-	-	0.0012	0.025	0.03	-	0.015	0.4
Kaon <i>p</i> _T re-weighting	0.0094	0.020	0.0041	0.0015	0.085	0.11	0.02	0.014	1.1
Proper decay length resolution	0.0009	-	0.0008	0.0021	0.004	-	0.02	0.006	2.9
PDF modelling assumptions	0.0016	0.002	0.0021	0.0021	0.010	0.03	0.04	0.006	0.2
Flavour tagging	-	-	-	-	-	-	0.02	0.005	-
Background mistag modelling	0.0021	-	0.0013	0.0018	0.074	1.10	0.02	0.002	0.7
Proper decay length efficiency	0.0015	-	0.0023	0.0057	-	-	-	0.002	1.0
Total systematics	0.0116	0.022	0.0117	0.0073	0.684	1.12	0.66	0.032	3.5

CMS PAS BPH-13-012

Fit results

Multi-dimensional maximum likelihood fit applied with tagged signal model, Gaussian constraint on Δm_s to PDG value

Fit range: B_s mass in [5.24, 5.49] GeV ct in [0.02, 0.3] cm

CMS PAS BPH-13-012

ICNFP, Aug. 2014

Results on Φ_s , $\Delta\Gamma_s$

 $\phi_{s} = -0.03 \pm 0.11 \text{ (stat.)} \pm 0.03 \text{ (syst.) rad}$ $\Delta\Gamma_{s} = 0.096 \pm 0.014 \text{ (stat.)} \pm 0.007 \text{ (syst.) ps}^{-1}$

Quarkonia cross sections and polarization

Heavy quarkonia interesting to understand hadron formation. S-wave vector quarkonia formed from heavy qq pairs created as: color singlet (CS) ${}^{3}S_{1}^{[1]}$ or one of 3 color octets (CO) ${}^{1}S_{0}^{[8]}$, ${}^{3}S_{1}^{[8]}$, ${}^{3}P_{J}^{[8]}$ -> similar cross section shapes, but different polarizations. Experimental situation on polarization not clear up to now, cross sections only measured in lower p_T range.

Quarkonium polarization

Polarization of $J^{PC} = 1^{--}$ quarkonium states measured through angular distribution of dileptons from J/ψ or Υ decay *PRD 16 (1977) 2219*

Selection of prompt charmonia

Prompt charmonia distinguished from B-hadron decays through $\mu\mu$ pseudo-proper decay length ℓ (L_{xy} ... most probable transverse decay length)

 $\boldsymbol{\ell} = \boldsymbol{L}_{xy} \cdot \boldsymbol{m}_{\psi(nS)} / \boldsymbol{p}_{T}$

EPJC 71(2011) 1575

Yield: extended unbinned maximum-likelihood fit to 2D M-*l* distribution

Single µ efficiencies, correlations and acceptance

J/ψ and $\psi(2S)$ production

CMS PAS BPH-14-001

ψ(nS) and Y(nS) polarizations

J/ ψ and ψ (2s) polarizations, 7 TeV Y(1s), Y(2s), Y(3s) polarizations, 7 TeV

PLB 727(2013) 381

J/ψ and $\psi(2S)$ polarization

Y(nS) polarization

- No strong polarization
- No strong p_T or y dependence

PRL 110 (2013) 081802

PRL 108 (2012) 151802

- $\chi_{b}(3P)$ feed-down to $\Upsilon(3S)$ neglected

Unpolarized ¹S₀^[8] component dominates quarkonium production

• CMS has measured with very good precision CP-violating phase ϕ_s and decay width difference $\Delta\Gamma_s$ of B_s with $B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$, in agreement with standard model ($\int s = 8 \text{ TeV}$, $L_{int} = 20 \text{ fb}^{-1}$).

• CMS has measured J/ ψ and ψ (2S) prompt double-differential cross sections up to O(100 GeV) in p_T (\int s = 7 TeV, L_{int} = 4.9 fb⁻¹).

• CMS has measured polarization of $J^{PC} = 1^{--}$ quarkonium states through angular distribution of dileptons from J/ψ or Υ decays ($\int s = 7$ TeV, $L_{int} = 4.9$ fb⁻¹). No strong polarization is seen. Unpolarized ${}^{1}S_{0}{}^{[8]}$ component dominates quarkonium production.

• CMS is preparing to take new B physics data at $\sqrt{s} = 13$ TeV in 2015.