
The Standard Model is a theory of the strong, weak and 
electromagnetic  forces,  formulated  in  the  language  of 
quantum  gauge  field  theories,  and  of  the  elementary 
particles  that  take  part  in  these  interactions.  It  does, 
however, not include gravity. Interactions are mediated by 
the exchange of virtual particles.


FORCE
 RELATIVE 
STRENGTH


RANGE


Strong (nuclear)
 1 
 10-15 m

Weak (radioactive decay)
 10-6
 10-18 m

Electromagnetic
 α (10-2)
 infinite

Gravitational
 10-38 
 infinite
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Matter particles: 

Fermions (half-integer spin, s = ½ħ) and their antiparticles.

There are 3 families (generations) of fermion fields, which are identical 
except for their masses. Fermions come as leptons and quarks. 


Mediator particles:

Gauge bosons (integer spin, s = 1ħ).

There are 3 types of gauge bosons, corresponding to the 3 interactions 
described by the Standard Model. 


Higgs particle:

Needed to explain that the symmetries of  the electroweak theory are 
broken to the residual gauge  symmetry of  QED. Particles that interact 
with the Higgs field cannot propagate at the speed of light and acquire 
masses through coupling to the Higgs boson (s = 0ħ).
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1964 
Quarks (u,d,s) are proposed by M. Gell-Mann and G. Zweig.

1964 
The Higgs mechanism is developed by R. Brout, F. Englert, P. Higgs, 



G. Guralnik, C. Hagen, T. Kibble

1965 
Color is proposed by O. W. Greenberg, M. Y. Han, Y. Nambu.

1967 
S. Weinberg, Sh. Glashow and A. Salam create the electroweak theory, 


unifying the electromagnetic and weak nuclear forces (Nobel prize in 1979), 

and incorporate the Higgs mechanism to generate mass.


1969 
J. Friedman, H. Kendall, R. Taylor find substructure of the proton


(first evidence of quarks) in a deep elastic scattering experiment.


1970 
GIM mechanism: fourth quark (c) allows a theory that suppresses 


flavor-changing neutral currents, mediated by the Z boson. 


1970 
Formulation of a quantum theory of the strong interaction 


(Quantum Chromodynamics, QCD) by H. Fritzsch and M. Gell-Mann.


1971 
Renormalizability of Yang-Mills theories with spontaneous symmetry


breaking (G. t’Hooft, M. Veltman)


1973 
Asymptotic freedom by D. Politzer, D. Gross, F. Wilczek.  
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1974 
The Standard Model of particle physics is presented in its modern form by


J. Iliopoulos.


1974 
The charm quark is observed at SLAC (B. Richter et al.) and at


Brookhaven (S. Ting et al.), through the discovery of the J/ψ.


1975 
Evidence of the tau lepton is found at SLAC (M. Perl et al.).

1977 
Evidence of the bottom quark (proposed in 1973 by M. Kobayashi, 



T. Maskawa) is found at Fermilab (L. Lederman et al.).

1983 
The W and Z bosons, mediators of the weak-force, are discovered at

 
CERN (C. Rubbia et al.).

1995 
Evidence for the top quark, the final undiscovered quark, is found at



Fermilab.

2000 
The tau neutrino, the last missing lepton, is observed at Fermilab’s 


DONUT experiment. 

Today 
The search for the Higgs particle (and violations of the Standard Model…)



is on!
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There are six leptons (and their antiparticles), classified according to their 
lepton number (Le, Lµ, Lτ) and their electric charge (Q).


Lepton
 Le
 Lµ
 Lτ
 Q
 Mass

e-
 +1
 0
 0
 -1
 0.511 MeV

νe
 -1
 0
 0
 0
 < 3 eV

e+
 -1
 0
 0
 +1
 0.511 MeV

νe
 +1
 0
 0
 0
 < 3 eV

µ-
 0
 +1
 0
 -1
 105.7 MeV

νµ
 0
 -1
 0
 0
 < 0.19 MeV

µ+
 0
 -1
 0
 +1
 105.7 MeV

νµ
 0
 +1
 0
 0
 < 0.19 MeV

τ-
 0
 0
 +1
 -1
 1.777 GeV

ντ
 0
 0
 -1
 0
 < 18.2 MeV

τ+
 0
 0
 -1
 +1
 1.777 GeV

ντ
 0
 0
 +1
 0
 < 18.2 MeV


_


_

_
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Quark
 B
 Q
 Mass

u
 1/3
 2/3
 1.5 - 3.3 MeV

u
 -1/3
 -2/3
 1.5 - 3.3 MeV

d
 1/3
 -1/3
 3.5 - 6 MeV

d
 -1/3
 1/3
 3.5 - 6 MeV

c
 1/3
 2/3
 1.27 + 0.07 

– 0.11  GeV

c
 -1/3
 -2/3
 1.27 + 0.07 

– 0.11  GeV

s
 1/3
 -1/3
 105 + 25 

– 35  MeV

s
 -1/3
 1/3
 105 + 25 

– 35  MeV

t
 1/3
 2/3
 171.3 ± 1.1 ± 1.2 GeV

t
 -1/3
 -2/3
 171.3 ± 1.1 ± 1.2 GeV

b
 1/3
 -1/3
 4.20 + 0.17 

– 0.07 GeV

b
 -1/3
 1/3
 4.20 + 0.17 

– 0.07 GeV


There  are  six  quarks  (and  six  antiquarks),  in  three  “colors”  (and 
“anticolors”), with baryon number B = ±1/3 and fractional electric charges.


_


_


_


_


_


_
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Mesons are made of quark-antiquark pairs, baryons consist of 3 quarks.


Q = -1/3

d u

Q = 2/3

s =0

s = -1 s

Quarks

s = 1

Q = -2/3 Q = 1/3

s

s =0

u d

Antiquarks

S:  Strangeness (S = - 1 for s quark)


Q

Q

Q

Q

Q
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Proton  and  neutron  have  about  the  same  mass.  Therefore  it  was 
convenient to order them into a doublet:


In  other words,  they  are  the  same particle  with  respect  to  the  strong 
interaction (same “strong isospin” I) but with a different third component 
of strong isospin (I3).


Going to quarks, isopin is a quantum number that distinguishes flavor. 
Each of the 3 lighter quarks has a different orientation of I3: 

I3(u) = ½, I3(d) = -½, I3(s) = 0


Many particle properties can be related to specific symmetries.
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n
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Examples: Meson nonet (octet plus singlet) and baryon decuplet.


π0 : (uū− dd̄)/
√

2
η : (uū + dd̄− 2ss̄)/

√
6

η′ : (uū + dd̄ + ss̄)/
√

3

1

3⊗ 3̄ = 1⊕ 8

1

Quarks: spin 1/2!

Pauli principle

-> COLOR

(O.W. Greenberg et al.)


I3: Strong isospin 

(3rd component),

S: Strangeness
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Neutrinos have only weak interactions, charged leptons experience weak 
and  electromagnetic  interactions,  quarks  have  strong,  weak  and 
electromagnetic interactions.

In the classical Standard Model, neutrinos are massless. 

Fermions come in left-handed weak isospin doublets and right-handed 
singlets, quarks come in color triplets.
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Interaction
 Mediator
 Mass
 Acts on

Electromagnetic
 γ


Photon

0
 Particle with electric charge


Weak

W+, W-, Z0


Intermediate 
vector bosons


80 GeV

90 GeV


Left-handed particle or 
right-handed antiparticle 

with flavor


Strong
 g1, …, g8

Gluons


0
 Particle with color
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Left-handed chiral fermion doublets and right-handed singlets:


If neutrinos are massless, as in the classical Standard Model, we would only 
have R = lR.


T3     … 
3rd component of weak isospin


Similarly for quarks:


Only left-handed chiral particle states (or right-handed chiral antiparticle 
states) take part in the weak interaction.


€ 

T3L =
1
2

− 1
2

 

 
 

 

 
 

€ 

T3R = 0

 L =                 R = lR , (νl )R 
   (l = e, µ, τ ) 

ν

l
 

 
 
 

 
 
L

c
s
 

 
 
 

 
 
L

t
b
 

 
 
 

 
 
L

u
d
 

 
 
 

 
 
L

, uR, dR                            , cR, sR                               , bR, tR




Leptons and quarks have another quantum number: weak isospin. 


Weak isospin connects quark and lepton doublets of left-handed particles, 
in  each  generation.  Left-handed  fermions  (fermions  with  negative 
chirality) have T = ½ and can be grouped into doublets with T3 = ± ½ that 
behave the same under the weak interaction.


T3(uL) = T3(cL) = T3(tL) = ½, T3(dL) = T3(sL) = T3(bL) = -½

T3(e-

L) = T3(µ-
L) = T3(τ-

L) = -½, T3(νeL) = T3(νµL) = T3(ντL) = ½


In analogy to the Gell-Mann-Nishijima formula (Q = I3 + Y/2; Y = B+S):


YW … weak hypercharge
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YW = 2 (Q-T3)
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s


v
 v


s

:     h = +1 (“right-handed”)         h = - 1 (“left-handed”)
v  ||
 s


Helicity  (h)  corresponds  to  the  sign  of  the  projection  of  spin  onto  the 
direction of motion.  It is, however, not Lorentz invariant. This can be seen 
if  the  inertial  system in  the  right-handed  case  moves  at  a  speed  faster 
than    : h changes from +1 to -1. 


For a massless particle there is no inertial system that can move faster than 
the speed of light, therefore for such particles h is Lorentz invariant. For 
massless particles, helicity is also the same as chirality.


−→v

1
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Dirac equation for a free fermion with mass m:  (iγµ∂µ – m) ψ (x) = 0


u1 = N





1
0

pz/(|E| + m)
(px + ipy)/(|E| + m)





1

u2 = N





0
1

(px − ipy)/(|E| + m)
−pz/(|E| + m)





1

v1 = N





pz/(|E| + m)
(px + ipy)/(|E| + m)

1
0





1

v2 = N





(px − ipy)/(|E| + m)
−pz/(|E| + m)

0
1





1

ψ(x) =





ψ1

ψ2

ψ3

ψ4





1

4 fundamental solutions:


ψ (x) ... 4-component Dirac spinor, x = (t,x,y,z)


ψ1 = u1ei(−→p −→r −Et) ψ3 = v1e−i(−→p −→r −Et)

ψ2 = u2ei(−→p −→r −Et) ψ4 = v2e−i(−→p −→r −Et)

1

N =
√

|E|+m
2m

1

|E| = E+ = |E−|

1

u1, u2 describe a particle,  v1, v2 an antiparticle. 

The spin of u1, v1 is in +z-direction, the spin of u2, v2 in -z-direction. 
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The eigenstates of the chirality operator γ5 are defined as left-handed 

(uL, vL) and right-handed (uR, vR) chiral states:


Projection operators project out the chiral eigenstates:


γ5uR = +uR, γ5uL = −uL, γ5vR = −vR, γ5vL = +vL

1

PR = 1
2(1 + γ5) PL = 1

2(1− γ5)

1

PRuR = uR PRuL = 0 PLuR = 0 PLuL = uL

PRvR = 0 PRvL = vL PLvR = vR PLvL = 0

1

PR projects out right-handed particle states and left-handed antiparticle 
states.

We can write any spinor in the form of its chiral components:


ψ = ψR + ψL = 1
2(1 + γ5)ψ + 1

2(1− γ5)ψ

1
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γ0 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1





1

γi =
(

0 σi

−σi 0

)

1

γ5 = γ0γ1γ2γ3 =
(

0 1
1 0

)

1

σ2 =
(

0 −i
i 0

)

1

σ1 =
(

0 1
1 0

)

1

σ3 =
(

1 0
0 −1

)

1

Dirac (γ ) matrices (4 x 4)


Pauli matrices (2 x 2)
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SU(3)C ⊗ SU(2)L ⊗U(1)Y

1

In a gauge theory there is a group of transformations of the field variables 
(gauge  transformations)  that  leaves  the  physics  of  the  quantum  field 
unchanged. This condition is called gauge invariance. 


The Standard Model is a gauge theory. It is based on the symmetry group:


The gauge symmetry is broken by the vacuum. The electroweak group is 
broken  down  to  the  electromagnetic  subgroup  through  Spontaneous 
Symmetry Breaking (SSB) to:


SSB generates  the masses  of  the  weak gauge bosons,  and gives  rise  to  a 
scalar particle, the Higgs particle. The fermion masses are also generated 
through SSB.


SU(3)C ⊗U(1)QED

1
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Let us consider the transformation U of a wave function ψ: 

 
 
ψ′=Uψ


If U is a continuous transformation, U has the form: 
   U=eiΛ           Λ … operator 

If Λ is a hermitian operator (Λ= Λ+= Λ*T), U is a unitary transformation: 
         U=eiΛ     U+=(eiΛ)*T= e-iΛ*T = e-iΛ    ⇒   UU+= eiΛ e-iΛ =1 
Remark: U is not a hermitian operator since U≠U+ 

Λ is called a generator of U. 
        The following four properties define a group: 
         1) Closure: If A and B are elements of the group, AoB is also an element. 
         2) Identity: For all group elements A: IoA=A. 
         3) Inverse: For each group element  there is an inverse element such that AoA-1=I. 
         4) Associativity: If A,B,C are group elements, Ao(BoC)=(AoB)oC are also elements. 

The group is abelian if the commutativity relation holds: AoB= BoA 
The group is special if the determinant is det U = 1.            
Remarks: Transformation with only one parameter Λ yields the unitary abelian group U(1). 

  The group SU(2) is an example of a non-abelian group. 
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Interactions  among  fundamental  particles  are  described  by  symmetry 
principles.  Every  symmetry  of  nature  yields  a  conservation  law,  every 
conservation  law  reveals  an  underlying  symmetry  (Noether’s  theorem). 
Examples:


All  fundamental  interactions  are  invariant  under  local  gauge 
transformations. 

Dynamics  among  fundamental  particles  are  described  by  a  “Lagrange 
density” or “Lagrangian”, which depends on the field and its derivative. 

Lagrangian of a free fermion with mass m:


Symmetry
 Conservation law

Translation in time
 Energy

Translation in space
 Momentum

Rotation
 Angular momentum

Gauge transformation
 Charge


L0 = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x)

1
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Transformation:

U: Group of all unitary matrices. Simplest case: U(1), U = e iθ, θ = real constant.

L0 is invariant under global U(1) transformation:


If one allows the phase transformation to depend on space-time (θ =θ(x)), L0 is 
no longer invariant under this local transformation, because:


This means that once a given phase convention has been adopted at a reference 
point, the same convention must be taken at all space points -> unnatural!

The gauge principle is the requirement that the U(1) phase invariance should hold 
locally.


ψ → Uψ

1

∂µψ(x)→ eiθψ(x) (∂µ + i∂µθ) ψ(x)

1

L0 → ie−iθψ(x)γµeiθ∂µψ(x)−me−iθψ̄(x)eiθψ(x) = L0

1

ψ(x) → ψ′(x) = eiθψ(x)

1
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Try to add extra piece to the Lagrangian, a new spin-1 field Aµ (x), transforming as:


One also defines the covariant derivative:


The covariant derivative transforms just like the field itself:


We achieve a Langrangian invariant under local gauge transformations:


Aµ(x) → A′
µ(x) = Aµ(x)− 1

e∂µθ

1

Dµψ(x) := [∂µ + ieAµ(x)] ψ(x)

1

Dµψ(x) → (Dµψ)′(x) = eiθDµψ(x)

1

L = iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x) = L0 − eAµ(x)ψ̄(x)γµψ(x)

1
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The gauge principle has generated an interaction between the Dirac spinor and the 
gauge field Aµ.

To get the complete Langrangian for QED we have to add a kinetic term and in 
principle a mass term:


Lkin = −1
4Fµν(x)F µν(x)

1

Fµν = ∂µAν − ∂νAµ

1

electromagnetic field 
strength (tensor)


Lmass = 1
2m

2AµAµ

1

This term violates gauge invariance, therefore the 
photon mass must be 0! 


LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1
4Fµν(x)F µν(x)

1

∂µF µν = Jν = eψ̄γνψ

1

Maxwell equations


Jν  … fermion electromagnetic current
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The  most  stringent  experimental  tests  of  QED  come  from  the  high-precision 
measurements of the electron (and muon) magnetic moments:


“Anomaly” of the magnetic moment:


ae arises entirely from virtual electrons and photons. These contributions are fully 
known to O(α4); α = e2/4π ≈ 1/137 is the QED coupling constant (fine structure 
constant).


ae = ( 1 159 652 180.85 ± 0.76 ) . 10-12


ae provides also the most accurate determination of α:


α-1 = 137.035 999 719 ± 0.000 000 096


µe = 1
2gµ0 µ0 = e

2m

1

… Bohr’s Magneton

     9 . 10-24 JT-1


a = g−2
2

1



Besides the electric charge quarks also have a color charge. 
Gluons also have color charges, which are however not pure but 
mixed. The theory of the strong interaction is called quantum 
chromodynamics. 

Color Anticolor 

RED CYAN 

BLUE YELLOW 

GREEN MAGENTA 
Baryons 

q 

q q 

Mesons 

d 

u q 

q 
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In order to satisfy Fermi-Dirac statistics, Quarks have 3 color degrees of freedom: 
NC = 3 “(red, blue, green)”.


     q(r) =      
 
      q(b) =      
 
      q(g) =   


€ 

1
0
0

 

 

 
  

 

 

 
  

€ 

0
1
0

 

 

 
  

 

 

 
  

€ 

0
0
1

 

 

 
  

 

 

 
  
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Example Δ++ = | u↑ u↑ u↑ >      JP = 3/2+


Angular momentum J

Parity P: symmetry under spatial (mirror) transformations


The wave function of the Δ++ is totally symmetric without color:

ψqqq = ψ space ψ spin ψ flavor


Restore asymmetry by introducing ψcolor, which is totally antisymmetric:

ψqqq = ψ space ψ spin ψ flavor ψ color                  
 
 


(x→ −x, y → −y, z → −z)

1



For baryons and mesons (quarks qα, α = 1,2,3 for red, green, blue) the color term 
can be expressed as:


εαβγ  (Levi-Civita  symbol)  is  +1  for  even  permutations  of  α,β,γ  (1,2,3;  2,3,1; 
3,1,2), -1 for odd permutations (1,3,2; 3,2,1; 2,1,3) , and 0 for α=β or β=γ or γ=α.


δαβ (Kronecker delta) is 1 for α=β, and 0 for α≠β.


Summation over equal indices is implied.


Baryons and mesons appear only in color-singlet combinations.


We observe no free particles with non-zero color. 

Free quarks can therefore not be observed, they are confined inside the hadrons, 
just like the gluons.
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B = 1√
6
εαβγ|qαqβqγ〉 M = 1√

3
δαβ|qαq̄β〉

1



Gluons can have mixed colors:


The red quark turns into a blue quark, emitting a red-antiblue gluon.


Are there 9 gluons? :

In terms of color SU(3)C symmetry, these 9 states constitute a color

octet (|1> … |8>) and a singlet  (|9>):
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b


r

rb
-


“ r → b + rb ”
-


g


rr̄, rb̄, rḡ, br̄, bb̄, bḡ, gr̄, gb̄, gḡ

1

|9〉 = (rr̄ + bb̄ + gḡ)/
√

3

1

Confinement  requires  that  all  naturally 
occurring  particles  are  color  singlets 
(color invariant), therefore the octet never 
appears as free particles. However, |9> is 
a  singlet!  Could  it  be  the  photon  or 
another  particle  giving  rise  to  a  long-
range force with strong coupling?

NO! Our world would be different…


|1〉 = (rb̄ + br̄)/
√

2
|2〉 = −i (rb̄− br̄)/

√
2

|3〉 = (rr̄ − bb̄)/
√

2
|4〉 = (rḡ + gr̄)/

√
2

|5〉 = −i (rḡ − gr̄)/
√

2
|6〉 = (bḡ + gb̄)/

√
2

|7〉 = −i (bḡ − gb̄)/
√

2
|8〉 = (rr̄ + bb̄− 2gḡ)/

√
6

1



R  =  _____________________________ 
σ (e+e- →  hadrons)

σ (e+e- →  µ+ µ-)


29


Measurement of the ratio of the total cross sections for e+e- annihilation into 
hadrons and muons:


f    … 
quark flavors u, d, s, c, b, t

NC … 
number of color charges


Since the 3 color states have identical electric charges, the cross section for the 
production of quark pairs of a certain flavor type should be proportional to the 
number of color charges.


Taking into account higher orders (e.g. 3-jet events) yields:


 
 
 
 
        Q2 … momentum transfer


σ(e+e− → qq̄) = NC (q2
u + q2

d + q2
s ...) σ(e+e− → µ+µ−)

1

R0 = σ(e+e− → qq̄)/σ(e+e− → µ+µ−) = NC (q2
u + q2

d + q2
s ...)

1

R = R0 (1 + αs(Q2)/π + ...)

1



R  =  _____________________________ 
σ (e+e- →  Hadronen)

σ (e+e- →  µ+ µ-)


    σ (e+e- →  hadrons) = σ (e+e- →  qq + qqg + qqgg + qqqq + …  )
-
 -
 -
 -
 -


qq
-


qq-
qqg
-


 R is almost constant, as e+e- →  qq dominates. 
-
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u, d, s: 
 
R0 = 3 (qu
2 + qd

2 + qs
2) = 2


u, d, s, c:
 
R0 = 3 (qu
2 + qd

2 + qs
2 + qc

2) = 10/3 = 3.3

u, d, s, c, b: 
R0 = 3 (qu

2 + qd
2 + qs

2 + qc
2 + qb

2) = 11/3 = 3.7

u, d, s, c, b, t: 
R0 = 3 (qu

2 + qd
2 + qs

2 + qc
2 + qb

2 + qt
2) = 5


31
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W.-M. Yao et al., Rev. Part. Phys., J. Phys. G33 (2006) 1


NC = 3




The ratio between 3-jet and 2-jet events can be used to measure αs = gs /4π. 
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q


q
-

g


α s
e+


e-


Z0


q


q
-


e+


e-


Z0




α s (mZ
2) = 0.118 ± 0.002
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Global SU(3)C transformations in color space for qf
α, a quark field of flavor f and 

color α :


The SU(3)C matrices can be written in the form:


θ a … arbitrary parameters

λa/2 (a = 1, …, 8) … generators of the fundamental representation of SU(3)C


λa … 3-dimensional Gell-Mann matrices


Similar to QED, we require that the QCD Lagrangian be also invariant under 
local SU(3)C transformations θ a = θ a (x) by using covariant derivatives:


gs is the strong coupling constant.

Since there are 8 gauge parameters, we need 8 gluon fields (a=1,..,8): 


qα
f → (qα

f )′ = Uα
β qβ

f

1

U = exp{iλa

2 θa}

1

UU † = U †U = 1

1

det U = 1

1

Dµqf = [∂µ + igs
λa

2 Gµ
a(x)] qf

1

Dµqf = [∂µ + igs
λa

2 Gµ
a(x)] qf

1

[λa

2 , λb

2 ] = ifabc λc

2

1

f abc … structure constants 

(real, antisymm.) 
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The gauge transformation of the gluon fields is more complicated than the one 
obtained  in  QED  for  the  photon,  as  the  non-commutativity  of  the  SU(3)C 
matrices gives rise to an additional term involving the gluon fields themselves.


Introduce field strengths, to build the gauge invariant kinetic term for the gluon 
fields:


LQCD = −1
4G

µν
a Ga

µν +
∑
f

q̄α
f (iγµ∂µ −mf )qα

f

1

Gµν
a (x) = ∂µGν

a − ∂νGµ
a − gsfabcGµ

b G
ν
c

1

Dµqf = [∂µ + igs
λa

2 Gµ
a(x)] qf = [∂µ + igsGµ(x)]qf

1

Gµ
a → (Gµ

a)′ = Gµ
a − 1

gs
∂µ(δθa)− fabcδθbGµ

c

1
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We can decompose LQCD into its different pieces:



 
 
 
 



LQCD = −1
4(∂

µGν
a − ∂νGµ

a)(∂µGa
ν − ∂νGa

µ) +
∑
f

q̄α
f (iγµ∂µ −mf )qα

f

1

+gs

2 fabc(∂µGν
a − ∂νGµ

a)Gµ
b G

µ
c −

g2
s
4 fabcfadeG

µ
b )Gµ

c G
d
µG

e
ν

1

(a)


(b)


(c)


(a) 
Kinetic terms for the gluon and quark fields

(b) 
Color interaction between quarks and gluons 

(c) 
Cubic and quartic gluon self-interactions


−gsGµ
a

∑
f

q̄α
f γµ(λa

2 )αβ qα
f

1
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Low-energy information was sufficient to determine the structure of modern 
electroweak theory. The W and Z were introduced, and their masses correctly 
estimated before their experimental discovery.


Neutral currents:

f


f

Z0


Charged currents:


f … fermion 

(quarks, leptons -

including neutrinos)


l … e, µ, τ

q … quark

ν … neutrino


νl


l


W±


±


qj


qi


W-


(- 1/3)


(+ 2/3)
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Only  left-handed  fermions  and  right-handed  antifermions  couple  to  the  W. 
Therefore, parity P  and charge conjugation C  (particle <-> antiparticle) are 
maximally violated. CP is still conserved.


The W couple to the fermion doublets, where the electric charges of the two 
fermion partners differ by one unit. The decay channels of the W- are then:


All fermion doublets couple to the W with the same universal strength.


The doublet partners of the u, c and t appear to be mixtures of the three charge  
-1/3 quarks, related through the unitary Cabibbo-Kobayashi-Maskawa matrix:


The weak eigenstates are different from the mass eigenstates. V characterizes 
flavor mixing, e.g. Vud specifies coupling of  u to d  (d →  u +W-).





d′

s′

b′



 = VCKM




d
s
b



 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d
s
b





1

M. Kobayashi

T. Maskawa

2008


W− → e−ν̄e, µ−ν̄µ, τ−ν̄τ , d′ū, s′c̄

1



Gauge  invariance  was  crucial  for  determining  the  right  QED  and  QCD 
Lagrangians.  For  weak  interactions  it  is  more  complicated,  since  we  have 
several  fermionic flavors  and different  properties  for  left-  and right-handed 
fields.  Moreover,  the  left-handed  fields  should  appear  in  doublets,  and  the 
gauge bosons W and Z should be massive, since the weak interaction is of 
short range. If we want to include also electromagnetic interactions, we need 
an additional U(1) group. The obvious group to accommodate all this is: 


L  refers  to  left-handed  fields,  Y(W)  is  the  weak  hypercharge  (naïve 
identification with electromagnetism does not work). For left-handed leptons 
YW = -1, and for right-handed leptons YW = -2.
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SU(2)L ⊗U(1)Y

1



SU(2)L doublet:


Singlet:


Transformation under SU(2)L : 
 
 
 
(a = 1,2,3)


and under U(1)Y:


Global transformations under                                  in flavor space: 
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L =

(
ν
e

)

L

=
1

2
(1− γ5)

(
ν
e

)

1

R = eR = 1
2(1 + γ5)e

1

UL = exp{iαa σa

2 }

1

SU(2)L ⊗U(1)Y

1

L→ L′ = eiαa σa

2 L, R→ R′ = R

1

L→ L′ = eiβ
YL
2 L, R→ R′ = eiβ

YR
2 R

1

L′ = eiβ
YL
2 ULL

R′ = eiβ
YR
2 R

1
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We require the Lagrangian to be invariant under local gauge transformations 
[αi = αi (x), β = β (x)] and introduce covariant derivatives as in QED. Since 
there are 4 gauge parameters, 4 different gauge bosons are needed:


Explicitly for L and R lepton states:


We have the correct number of gauge bosons, since we need the photon and 3 
intermediate vector bosons W±, Z.


Dµ = ∂µ + ig σa

2 W a
µ + ig′ Y

2 Bµ

1

DµL = [∂µ + ig σa

2 W a
µ (x) + ig′ YL

2 Bµ(x)]L

DµR = [∂µ + ig′ YR
2 Bµ(x)]R

1
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The  complete  electroweak  Lagrangian  is  actually  quite  complicated, 
impossible to derive in the timeframe of this lecture.


Kinetic term for the gauge fields, which also includes self-interactions of the 
gauge bosons:


Field strengths:


Note:  No  mass  term  allowed,  since  it  would  violate  gauge  symmetry  by 
mixing left- and right-handed fields.

Example for fermionic mass term: 


Absence of mass is fine for the photon, but we need heavy vector bosons in 
order to get short-range weak interactions!


LG = −1
4BµνBµν − 1

4W
i
µνW

µν
i

1

Bµν = ∂µBν − ∂νBµ

1

LG  pure gauge-field, LF  fermion-gauge field, LS  scalar, 

LY  fermion-scalar (Yukawa), Lfix gauge fixing, Lgh ghosts


LEW = LG + LF + LS + LY + Lfix + Lgh

1

Lm = −mψ̄ψ = −m(ψ̄LψR + ψ̄RψL)
Dµqf = [∂µ + igs

λa

2 Gµ
a(x)] qf = [∂µ + igsGµ(x)]qf

1
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In order to generate masses, we need to break the gauge symmetry. How is this 
possible  with  a  symmetric  Lagrangian  (which  is  also  needed  to  preserve 
renormalizability of a theory)? 

->  By  choosing  a  Lagrangian  that  is  invariant  under  a  group  of 
transformations, and that has a degenerate set of states with minimal energy.



 
 



The particle has to choose a state 
with minimal energy -> symmetry 
is broken (actually hidden).


Y. Nambu 2008
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Consider a complex scalar field φ(x), with a Lagrangian invariant under global 
phase transformations of φ(x) and with potential V:


In order to have a ground state, the potential should be bounded from below, 
i.e. h > 0. For the quadratic term there are 2 possibilities:


µ2 > 0: The potential has only the trivial minimum φ(x) = 0. It describes a 
massive scalar particle with mass µ and quartic coupling h.


µ2 < 0: The minimum is obtained for those field configurations with:



 
 


|φ0| =

√
−µ2

2h = v√
2

> 0

1

L = ∂µφ†∂µφ− V (φ), V (φ) = µ2φ†φ + h(φ†φ)2

1



v√
2

1
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Due to the U(1) phase invariance of the Lagrangian, there is an infinite number 
of degenerate states of minimum energy:


If we choose a particular solution as the ground state, e.g. θ = 0, the symmetry 
gets  spontaneously  broken.  We  can  parameterize  the  excitations  over  the 
ground state as:


η describes a massive state of mass -2µ2, 

ξ a massless state. 

Goldstone theorem: SSB of a continuous global

symmetry is always accompanied by one or more

massless scalar (spin 0) particles (Goldstone bosons).



 
 



φ0(x) = v√
2
eiθ

1

V (φ) = V (φ0)− µ2η2 + hvη(η2 + ξ2) + h
4 (η2 + ξ2)2

1

φ(x) = 1√
2
[v + η(x) + iξ(x)]

1
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Φ(x) =

(
φ+(x)
φ0(x)

)

1

Dµ = ∂µ + ig σa

2 W a
µ + ig′ YΦ

2 Bµ

1

Obviously, the Goldstone theorem did not solve our problem of massive gauge 
bosons. However, what happens if we have a local gauge symmetry?

We  try  to  introduce  a  new  doublet  of  complex,  scalar  fields  with  weak 
hypercharge  YΦ  =  1  to  accomplish  the  breaking of  electroweak symmetry, 
leaving the electromagnetic gauge subgroup U(1)em unbroken:


It  is  coupled  to  the  gauge  fields  through  the  scalar  Lagrangian,  which  is 
invariant under local                               transformations:


The potential V(Φ) is constructed in such a way that Φ has a non-vanishing 
vacuum expectation value:



 
 



SU(2)L ⊗U(1)Y

1

〈Φ〉 =

(
0
v√
2

)

1

LH = (DµΦ)†DµΦ− V (Φ) = (DµΦ)†DµΦ− µ2Φ†Φ− h(Φ†Φ)2

h > 0, µ2 < 0

1

LS = (DµΦ)†DµΦ− V (Φ) = (DµΦ)†DµΦ− µ2Φ†Φ− h(Φ†Φ)2

1
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Φ(x) =
1√
2

(
0

v + H(x)

)

1

Φ(x) can be written in the form:


The components φ+(x),  H,  χ   have vacuum expectation values 0. The local 
SU(2)L invariance of the Lagrangian allows to rotate away (“unitary gauge”) 
any  dependence  on  φ+  and  χ.  This  means  that  these  are  unphysical,  they 
correspond to 3 “ghosts” or Goldstone bosons (remember, φ+ is complex, with 
2 real parameters). 

In this particular gauge, the Higgs field has the simple form:


The real field H(x) describes physical, neutral particles with mass mH = µ√2.

Vacuum expectation value:       = 246 GeV.
v

α = e2

4π

1

Φ(x) =

(
φ+(x)

(v + H(x) + iχ(x))/
√

2

)

1
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The scalar Lagrangian                                                           has introduced a 
new scalar particle, the Higgs boson H. In terms of the physical fields, in the 
unitary gauge, Ls  takes the form:


Higgs couplings to the gauge bosons:


LHG2 = m2
W W †

µW µ{1 + 2
vH + H2

v2 }+ 1
2m

2
ZZµZµ{1 + 2

vH + H2

v2 }

1

LS = 1
4hv4 + LH + LHG2

Dµqf = [∂µ + igs
λa

2 Gµ
a(x)] qf = [∂µ + igsGµ(x)]qf

1

LH = 1
2∂µH∂µH − 1

2m
2
HH2 − m2

H
2v H3 − m2

H
8v2 H4

1

LS = (DµΦ)†DµΦ− µ2Φ†Φ− h(Φ†Φ)2

1
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Higgs in CMS
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Direct search at LEP ended 2000. Result: mH > 114.4 GeV/c2 @ 95% c.l.


From ‘precision electroweak fits’

(LEP, SLD, CDF, D0): 


Preferred value:

mH = (87 +35 - 26) GeV/c2


mH < 157 GeV/c2 @ 95% c.l.


0

1

2

3

4

5

6

10030 300

mH !GeV"

!
"

2

Excluded Preliminary

!#
had

 =!#
(5)

0.02758#0.00035

0.02749#0.00012

incl. low Q
2
 data

Theory uncertainty

August 2009 m
Limit

 = 157 GeV
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The covariant derivative                                               couples the scalar 
doublet to the                               gauge bosons. In the unitary gauge the kinetic 
part of the scalar Lagrangian takes the form:


with the following transformation from the fields Wµ
a, Bµ to the physical W± 

and Z fields:


The vacuum expectation value of the neutral scalar has generated a quadratic 
term for the W and Z, these bosons have acquired mass:



 
 
 
 



Dµ = ∂µ + ig σa

2 W a
µ + ig′ YΦ

2 Bµ

1

SU(2)L ⊗U(1)Y

1

Wµ =
W 1

µ+iW 2
µ√

2
W †

µ =
W 1

µ−iW 2
µ√

2

1

Aµ = cosθW Bµ + sinθW W 3
µ

1

Zµ = −sinθW Bµ + cosθW W 3
µ

1

W-, W+


Photon γ


Z0


mZcosθW = mW = 1
2gv

1

θW … Weinberg angle (θW ≈ 280, sinθW ≈ 0.23)


mZ = 1
2

√
g2 + g′2 v

1

e = gg′√
g2+g′2

1

α = e2

4π

1

(DµΦ)†DµΦ→ 1
2∂µH∂µH + (v + H)2{g2

4 W †
µWµ + g2

8cos2θW
ZµZµ}

1
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Z → µ+µ -  


UA1


Experiments UA1 and UA2 at the CERN Super-Proton-Antiproton Collider.

Nobel Prize for C. Rubbia and S. van der Meer 1984.
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We need not only masses for the W and Z, but also fermion masses (at least 
for the charged fermions in the classical Standard Model). A fermionic mass 
term of the form                                                     is not allowed since it 
violates  gauge  symmetry.  Since  we  have  introduced  an  additional  scalar 
doublet into the model, we can write the following gauge-invariant Yukawa 
Lagrangian describing fermion-scalar coupling (f = u, d, e, …):


Yukawa interactions between the massive fermions and the physical  Higgs 
field occur with coupling constants proportional to the fermion masses.


LY = −
∑
f

mf ψ̄fψf −
∑
f

mf

v ψ̄fψfH

1

mf = gf
v√
2

1

gf … Yukawa couplings


Lm = −mψ̄ψ = −m(ψ̄LψR + ψ̄RψL)
Dµqf = [∂µ + igs

λa

2 Gµ
a(x)] qf = [∂µ + igsGµ(x)]qf

1
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