Exploring the Energy Frontier est Results from the LHC

TT

Claudia-Elisabeth Wulz Institute of High Energy Physics, Vienna

Important open questions

What is the origin of electroweak symmetry breaking? Is it the simplest Higgs mechanism? How must the Standard Model be extended? Supersymmetry, Grand Unified Theories, … What are dark matter and dark energy? What are the last secrets of neutrinos? Can we unify all forces? Can we include gravity? Are there extra dimensions? Are quarks and leptons fundamental particles? Are there more than three generations? Why is there asymmetry between matter and antimatter? Do we understand dense and hot matter? Quark-gluon plasma

LHC performance with protons

http://lpcc.web.cern.ch/LPCC/index.php?page=luminosity_charts

Integrated proton luminosities

- Almost 50 pb⁻¹ delivered per experiment in 2010, \sqrt{s} = 7 TeV (except ALICE: to keep pile-up in the TPC below 5%)
- More than 5 fb⁻¹ each for ATLAS and CMS in 2011, \sqrt{s} = 7 TeV
- More than 6 fb⁻¹ recorded per experiment since 2012, $\sqrt{s} = 8$ TeV
- Order of 15 fb⁻¹ expected per experiment in 2012, $\sqrt{s} = 8$ TeV

MS Experiment at LHC/CERN Data recorded: Mon May 28-01:16:20 2012 O Run Event: 195099 (35438125 **Lim-section** 65 Orbit/Crossing: 16992111 2299

Challenge: in-time pileup

Multiple vertices, many tracks: <n>≈33 for highest luminosity in 2012 \rightarrow challenges to trigger and computing! -> LHC explores luminosity leveling for ATLAS and CMS

Vertex resolution better than ~200 µm, vertices a few cm apart, beam spot size 16 µ**m at collision point. Average number of interactions at nominal LHC luminosity and 25 ns bunch spacing: 23.**

C.-E. Wulz 5 HEPHY-SMI Seminar, June 2012

CMS Detector

SILICON TRACKER Pixels (100 x 150 μ m²) $~66M$ channels $\sim 1 \text{m}^2$ Microstrips (80-180um) \sim 200 m^2 \sim 9.6M channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) \sim 76k scintillating PbWO, crystals

PRESHOWER Silicon strips ~ 16 m² ~137k channels

STEEL RETURN YOKE $~13000$ tonnes

> **SUPERCONDUCTING SOLENOID** Niobium-titanium coil carrying $~18000$ A

Total weight Overall diameter Overall length
Magnetic field

: 14000 tonnes $: 15.0 m$ $: 28.7 m$ $: 3.8 T$

HADRON CALORIMETER (HCAL) Brass + plastic scintillator $~\sim$ 7k channels

Steel + quartz fibres \sim 2k channels **MUON CHAMBERS**

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

FORWARD CALORIMETER

Physics outline

Cross-sections

- elastic, inelastic and total cross-sections

Standard Model physics

- particle production (soft physics, resonances, correlations)
- QCD and top physics
- electroweak physics (W, Z)
- Higgs boson search

Beyond the Standard Model physics

- fourth generation quarks
- leptoquarks, compositeness
- Supersymmetry, long-lived particles
- extra dimensions and heavy resonance states

Remarks

Only selected results are presented. Heavy-ion physics is not covered in this talk. More details:

hps://twiki.cern.ch/twiki/bin/view/AtlasPublic

hps://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Cross-sections

Elastic cross-section

 measured by TOTEM (detectors up to ±220m from CMS centre) as function of 4-momentum transfer squared |t|

Inelastic and total cross-sections measured by particle and astrophysics experiments

Near-side long-range correlations

Rediscovery of the Standard Model

Mass slightly larger than predicted: 10.539 ± 0.004 (stat.) ± 0.008 (syst.) GeV *hep-ex 1112.5154, PRL 108 (2012) 152001*

ATLAS/CMS/LHCb combination for BR($B_s \rightarrow \mu\mu$)

Standard Model value: $BR(B_s^0 \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$

 $BR(B_s^0 \to \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$ CDF value: *PRL 107 (2011) 191801 hep-ex 1107.2304, BR* $(B_s^0 \to \mu^+\mu^-)$ < 4.3 × 10⁻⁸ at 95%C.L.

ATLAS/CMS/LHCb combined value:

BR $(B_s^0 \to \mu^+ \mu^-)$ < 4.2 × 10⁻⁹ at 95%C.L. *BR* $(B_s^0 \to \mu^+\mu^-)$ < 3.7 × 10⁻⁹ at 90%C.L.

The excess over background is at the level of 2σ. Compatibility with the SM is within 1σ . But there is still room for new physics!

CMS-PAS-BPH-12-009 LHCb-CONF-2012-017

Inclusive jet cross-sections, 3-jet/2-jet ratio R_{32}

Agreement with NLO pQCD cross-section predictions (with nonperturbative corrections) is good in general.

High-mass dijet events

m_{JJ} = 4 TeV

Top

"When top is measured, the experiment is ready for discovery phase" P. Jenni, 2009

 $t\overline{t}$ production at LHC stems from 87% gluon fusion, 13% qq annihilation τ , it is the set of $270'$, τ , $420'$ τ

- Interesting in itself since t decays before hadronizing
- Decay products of new particles
- Background to new particle searches

Top decays weakly as $t \rightarrow Wb$ almost exclusively. Event classes according to decay of W:

- All-hadronic
- lepton + jets
- \bullet dilepton (e⁺e⁻, µ⁺µ⁻, e[±]µ⁺)

Single top

Electroweak production of single tops (announced 2009 at Tevatron, 2011 at LHC) occurs with smaller cross-sections compared to production of top pairs. Analysis is difficult, but cut-based procedures become viable in addition to the initially used multivariate techniques.

W and Z cross sections

- \bullet W and Z (e and μ channels) are the first electroweak processes measured at LHC
- Tests for perturbative QCD and PDF's (W charge asymmetry)
- Detector calibration with Z
- Luminosity measurement
- Background for new physics

Production modes:

 Higgs boson production

C.-E. Wulz 27 HEPHY-SMI Seminar, June 2012

LHC HIGGS XS WG 2012

Higgs boson searches

Several search channels can be used, depending on branching fraction and background. The mass range up to about 600 GeV has been studied.

110 GeV < m_H < 150 GeV $H \rightarrow \gamma \gamma$ (BR ≈ 0.001-0.002) $H \rightarrow bb$ (in association with W/Z due to QCD background, up to $m_H \approx 130$ GeV) $H \rightarrow \tau \tau$ (QCD background \rightarrow VBF production, needs high luminosity)

110 GeV
$$
\lt
$$
 m_H \lt 600 GeV
\nH → ZZ → 4l
\nH → ZZ → 2l2v (from m_H ≈ 200 GeV)
\nH → ZZ → 2l2q (from m_H ≈ 200 GeV)
\nH → WW → 2l2v
\nH → WW → l v q \overline{q} ' (from m_H ≈ 300 GeV)

In high resolution channels ($\sigma_{m_H} \approx 1$ -2%) one searches for a narrow mass peak (γγ, $ZZ \rightarrow 4l$), in others one looks for a broad excess (channels with neutrinos and jets).

$H \rightarrow \tau \tau$

Production by vector boson fusion allows use of the rapidity gap between the "Tagging Jets" with high p_T in forward direction \rightarrow jet veto in central region:

H decay products τ identification: $\tau\tau \rightarrow ll, lh, hh$

H mass reconstruction:

Make use of collinear approximation of *l*-^ν (high mass results in strong boost along the original flight direction of the τ) and the angle between the two τ 's

$H \rightarrow \tau \tau$

$H \rightarrow ZZ^{(*)} \rightarrow 4$ **leptons**

"Golden" channel! Need excellent tracker, electromagnetic calorimeter and muon system. High efficiency for all leptons is important, as four of them are involved. Efficient lepton reconstruction down to low p_T is also necessary.

Background:

Irreducible: *ZZ*

Reducible: *tt, Zbb*

Suppression mainly through lepton isolation and b-tagging (impact parameter)

$H \rightarrow ZZ^{(*)} \rightarrow 4$ **leptons**

Event selection: pair of leptons close to Z mass

SM Higgs boson is excluded at 95% CL in the mass ranges 134–156 GeV, 182–233 GeV, 256–265 GeV and 268–415 GeV. The largest upward deviations from the background-only hypothesis are observed for m_H = 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 standard deviations, respectively. Once the look-elsewhere effect is considered, none of these excesses are significant.

 10^2 10^2 σ/σ _{SM} $\sigma/\sigma_{\text{SM}}$ $-$ Observed *CL*_s *ATLAS ATLAS* Observed *CL*^s 3 events near $H \rightarrow ZZ^{(*)} \rightarrow 4I$ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ Expected CL_s 95% CL limit on 95% CL limit on Expected CL_s 125 GeV: $\int Ldt = 4.8$ fb⁻¹ $\overline{\mathbf{1}}$ ± 1 σ $\int L dt = 4.8$ fb⁻¹ $\overline{\mathbf{1}}$ ± 1 σ $\mathbf{1} \pm 2 \sigma$ \sqrt{s} =7 TeV $\pm 2 \sigma$ 2 with 2e2u s=7 TeV 10 10 1 with 4μ 95% In total: 71 events 62±9 background 1 1 *hep-ex 1202.1415 PLB 710 (2012) 383* 110 120 130 140 150 160 170 180 200 250 300 350 400 450 500 550 600 m_H [GeV] m_H [GeV]

C.-E. Wulz 34 HEPHY-SMI Seminar, June 2012

$H \rightarrow WW \rightarrow l \nu qq'$

Event selection: Selections to discriminate between the signal and background events are based on kinematic and topological quantities including the angular spin correlations of the decay products.

No evidence for the Higgs boson is found, and at 95% confidence level the SM Higgs boson production in the mass range 327-415 GeV is excluded.

C.-E. Wulz 36

HEPHY-SMI Seminar, June 2012

Standard Model Higgs combination in CMS

Higgs boson discovery prospects

CMS-NOTE-2010-008

8 TeV instead of 7 TeV centre-of-mass energy saves about 25% of the data taking time.

Fourth generation quarks

3 data **2** $M_{\rm b}$, 500 GeV/c²
2 if $H + W(Z)$ Top- and bottom-like quarks: b', t' -> tW Signatures for b': trileptons or same-sign dileptons plus at least one b-jet Signatures for t': opposite-sign dileptons

Leptoquarks

Leptoquarks are color-triplet bosons with fractional charge arising e.g. in GUT theories.

Assumption: LQ couple only to quarks and leptons of the same SM generation.

Excited leptons

Excited lepton production via 4 fermion contact interactions can be described by an effective Lagrangian:

$$
\mathcal{L}_{contact} = \frac{\bar{g}_*^2}{2\Lambda^2} j^\mu j_\mu
$$

Clean final state: $\ell \ell \gamma$

 $l^* \to l \gamma$

Dijet resonances

hep-ex 1107.4771, PLB 704 (2011) 123

Search for new physics with pairs of dijets

Pair production of narrow dijet resonances, for example colorons.

 $CC \rightarrow q\bar{q}q\bar{q}$

 CMS PAS EXO-11-016 **Colorons: color octet scalars or vectors**

Event selection: at least 4 jets, jet pairs with equal mass

$W' \rightarrow l\nu$

Exclusion limits for several W' models have been derived:

- left-handed W' with Standard Model couplings
- right-handed W_R' with W-W' interference
- Kaluza-Klein W_{kk} ' states in split universal extra dimensions framework

hep-ex 1204.4764, submitted to JHEP

$Z' \rightarrow l^+l^-$

Several Z' models have been studied:

- sequential Standard Model
- Z'_w model (superstring inspired E_6 model)
- Z'_{st} Stückelberg extension

Kaluza-Klein Graviton G_{KK} search is also possible in this channel.

hep-ex 1206.1849, submitted to PLB

For each fermion of the Standard Model there is a supersymmetric boson partner and vice versa.

- -> stability of Higgs mass
- -> unification of forces
- -> candidate for dark matter

Up to now no SUSY partners with the same mass as SM particles have been found, therefore SUSY must be broken:

$$
m \neq \widetilde{m}
$$

Exploration of SUSY models

SUSY is not a single theory, but a framework of models. The minimal supersymmetric Standard Model (MSSM) has 105 parameters -> difficult to explore. We can study benchmark MSSM models with fewer parameters, and NMSSM's as well as R-parity $[R = (-1)^{2S+L+3B}]$ violating scenarios. New and sometimes more unusual experimental signatures will arise.

Examples:

CMSSM (constrained MSSM): $m_{1/2}$, m_0 , A_0 , tan β , sign(μ)

mSUGRA (minimal supergravity model): $m_{1/2}$, m_0 , A_0 , sign(μ)

NUHM (non-universal Higgs mass models; Higgs mass not unified with sfermion mass): $m_{1/2}$, m_0 , m_H (or m_{H_U} , m_{H_d}), A_0 , tan β , sign(μ)

mGMSB (minimal gauge-mediated SUSY breaking): $M_{\text{messenger}}$, Λ (visible sector soft SUSY breaking scale), $tan\beta$, $C_{\text{gravitino}}$, $N_{\text{messenger}}$ RPV MSSM (R-parity violating): m_{1/2}, m₀, A₀, tanβ, sign(μ), Λ

Initial generic searches are performed with a number of inclusive final states. Signatures can contain (b)-jets, missing transverse energy, leptons or photons. Specific searches have begun, for example for third generation squarks.

Interpretations can be made either through constrained (e.g. mSUGRA, GMSB) or simplified models (phenomenological, defined by an effective Lagrangian describing interactions of a small number of new particles).

New signatures are starting to be exploited (e.g. long-lived particles).

Examples of new signatures

mGMSB:

The NLSP plays an important role since cascade decay chains of sparticles typically end in the NLSP. This is often a stau, which decays to tau and gravitino or neutralino, which can decay to a photon and a gravitino (missing energy in the detector).

RPV MSSM:

Lepton number violation or baryon number violation is allowed, the proton is still stable. The LSP (not necessarily a neutralino) decays to Standard Model particles. For a neutralino LSP the signatures are the same as for R-parity conserving models, except that there is no missing energy. If the RPV coupling is very small, decays are delayed, leading to displaced vertices. For stau LSP there are taus in the final state.

CMSSM limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

MSSM direct sbottom pair production

 \tilde{a} and \tilde{a} In the MSSM \tilde{q}_R and \tilde{q}_L can mix to form 2 mass eigenstates. Mixing is proportional to the mass of the corresponding SM fermion, therefore it is important for the 3rd generation. Large mixing can yield sbottom and stop mass eigenstates that are much lighter than other squarks.

C.-E. Wulz 52 HEPHY-SMI Seminar, June 2012 Sbottom masses are excluded below 390 GeV for neutralino masses below 60 GeV.

Search for a very light scalar top

Event selection: 2 opposite-sign leptons, large E_T^{miss} + \geq 1 jet

Stop masses are excluded up to at least 130 GeV for neutralino 1 masses up to 65 GeV.

C.-E. Wulz 54 HEPHY-SMI Seminar, June 2012

Heavy "stable" charged particles

HSCP may be a long-lived NLSP, e.g. in Split-SUSY or GMSB.

If mass greater than about 100 GeV: $\beta = v/c < 0.9$.

Nuclear interactions may lead to charge exchange.

Signature: high-momentum particle with anomalously large energy loss dE/dx through ionization and an anomalously long time-of-flight.

Heavy long-lived charged particles

Data are consistent with background, estimated from data.

Extra dimensions

Our well known universe: 3 space dimensions + 1 time dimension String theory: minimum 6 extra dimensions

Gravity seems to be 10^{-38} times weaker than the strong interaction \rightarrow difficult to unify with other forces! A possible solutions of this hierarchy problems are extra dimensions.

Models with extra dimensions

There are several models, which have the following in common:

- There is a 3+1-dimensional (sub)space (brane, membrane)
- The brane is embedded in an 3+1+d dimensional space (bulk)
- The d extra dimensions have the same size *R*
- All particles and fields living in the bulk are replicated in Kaluza-Klein-towers.

O. Klein 1926: Extra dimensions are rolled up, i.e. a particle, which moves in these dimensions, comes back to the starting point. Standing waves emerge.

ADD model – large extra dimensions

Arkani-Hamed, Dimopoulos, Dvali Not the effective 4-dim. Planck scale, but the quantum gravity scale of the higherdimensional theory M_D is relevant. The only fundamental scale should be the electroweak scale $M_{FW} \approx M_D \approx 1$ TeV! *hep-ph 9803315, Phys. Lett. B 429, 263 (1998)*

$$
V(r) \sim \frac{m_1 m_2}{M_D^{d+2} r^{d+1}}, \quad r \ll R
$$

$$
V(r) \sim \frac{m_1 m_2}{M_D^{d+2} R^d} \frac{1}{r}, \quad r \gg R
$$

- Known particles live in the 3+1-dimensional brane
- The graviton can also move in the bulk
- There are d>2 extra dimensions
- Extra dimensions are rolled up in a torus with compactification radius *R*
- $d = 2$: $R \approx 1$ mm, $d = 3$: $R \approx 1$ nm Newton's law of gravity is tested down to about 0.1 mm.
- The graviton corresponds to a KK-tower with 3+1 mass spectrum $M_l = l/R$ ($l = 0,1,2,...$).

Randall-Sundrum Model (Warped ED)

L. Randall, R. Sundrum, PRL 83 (1999) 3370

Direct search for large extra dimensions

Search for large ED with diphotons and dileptons

Indirect search: Signature (e.g.) : enhancement of the Drell-Yan cross section

Black holes

Definition:

Object, whose gravitation is so strong that even light cannot escape from $\frac{1}{2}$, from the event horizon the escape velocity is larger than the speed of light.

The Schwarzschild radius defines the size of a black hole

 $(M_{BH} > M_{P})$:

 $R_S = 2M_B G_N/c^2$

If gravity becomes strong at small distances through extra dimensions $(M_p \rightarrow M_p)$, M_c^2 could also produce microscopic black holes (Ø 10⁻¹⁸ m). The colliding partons must come closer than a distance of 2 R_s . The black holes should very quickly $(-10^{-26} s)$ evaporate through Hawking radiation $(T_H \sim 1/M_{BH})$, producing all possible kinds of Standard Model particles. Signature at the LHC: many jets, leptons and photons with high p_T .

Conclusions

- • **The LHC has operated very successfully.**
- • **The physics of the last decades has been redone.**

• **The experiments have performed a large range of analyses, including on subjects that were not even known a decade or so ago.**

• **Discoveries may be just round the corner!**