

LHC und Österreichs Beteiligung Compact Muon Sole

Claudia-Elisabeth Wulz Institut für Hochenergiephysik Österreichische Akademie der Wissenschaften

ÖPG - Tagung, Fachausschuss für Lehrkräfte an Höheren Schulen Leoben, 25. Sep. 2008

Offene Fragen der Physik

Ursprung und Hierarchie der Teilchenmassen Gibt es ein Higgs-Teilchen und was ist seine Masse? Wie muß das Standardmodell erweitert werden? Supersymmetrie, Grand Unified Theories, ... Können alle Kräfte vereint werden?

Einbindung der Gravitation?

Gibt es zusätzliche Dimensionen? Gibt es eine Substruktur von Quarks und Leptonen? Gibt es mehr als drei Teilchengenerationen? Asymmetrie zwischen Materie und Antimaterie Woraus besteht die dunkle Materie des Kosmos? Woraus besteht die dunkle Energie? Ursprung des mantenchromodynamischen Confinement Quark-Gluon-Plasma

Wie entstand das Universum?

LHC und die Experimente

Beschleunigerkomplex des CERN

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

LINAC-2

Parameter des Large Hadron Collider

Umfang: 27 km

Proton - Proton

Teilchenpakete: 2 x 2808 (3564) Protonen / Paket: 1.15 x 10¹¹ Strahlenergie: 2 x 7 TeV Luminosität: 10³⁴ cm⁻²s⁻¹ Strahlkreuzungsintervall: 25 ns Kollisionsrate: bis zu 10⁹ pro Sekunde Flußdichte der Dipolmagnete: 8.33 T Anzahl der Dipolmagnete: 1232

Schwerionen (Pb-Pb) Strahlenergie: 5.5 TeV/Nukleonenpaar Luminosität: 10²⁷ cm⁻²s⁻¹ Strahlkreuzungsintervall: 125 ns

LHC-Hochfrequenzkavität

8 Kavitäten pro Strahl, am Punkt 4 des LHC-Rings, dienen zur Beschleunigung und longitudinaten Fokussierung der Teilchenpakete.

C.-E. Wulz

LHC-Dipolmagnete

Installation des letzten Dipolmagnets April 2007

C.-E. Wulz

ÖPG, Sep. 2008

10. September 2008 - First Beam!

ÖPG, Sep. 2008

LHC Collimation

LHC-Kollimatoren

Zweck: Entfernung von Halo, Vermeidung von Untergrund in Detektoren, Schutz des Beschleunigers

C.-E. Wulz

ÖPG, Sep. 2008

Kollimator 150 m downstream offen

Compact Muon Solenoid (CMS)

Pixel-Detektor

Nahe am Vertex. 3 Lagen im Barrel mit Radien 4, 7 und 11 cm. Endkappen befinden sich bei ±34 und ±46 cm vom Vertex. Si-Pixel liefern ein Muster von Raumpunkten. Auflösung: 10 to 20 µm. Sekundärvertices, zum Bespiel von Zerfällen von Teilchen mit Beauty-Quarks, werden identifiziert. Solche Teilchen sind besonders wichtig bei der Suche nach dem Higgsteilchen oder nach Supersymmetrie.

16000 Readoutchips in 0.25 μm CMOS-Technology, gebondet an die Silizium-Sensoren;

Strahlungsdosis 100 Mrad in 10 Jahren, deshalb Ersatz der innersten Lage nach 1 bis 2 Jahren vorgesehen.

readout chip

180 µm

Silizium-Streifen-Tracker

220 m² Si-Sensoren, 10.6 Millionen Si-Streifen

ÖPG, Sep. 2008

Elektromagnetisches Kalorimeter

Homogenes Kristallkalorimeter (PbWO₄) ausgelesen mit Photodetektoren. Vorteile: ausgezeichnete Energieauflösung, schnell, hohe Granularität, strahlungsfest.

Zentralbereich:

61200 Kristalle, Auslesung durch je 2 Avalanche-Photodioden.

Endkappen: 14648 Kristalle, Auslesung durch Vakuumphototrioden.

Hadronkalorimeter HB, HE

Aufgabe: Energiemessung von Hadronjets und fehlender Energie. Der innere Teil (HB, HE - Barrel + Endkappen) besteht aus einem Messing-Szintillatorsandwich. Die Auslesung erfolgt durch Photodioden und optische Fasern.

Hadronkalorimeter HF

In den beiden Vorwärtsregionen wird die Kalorimetrie durch das Forward HCAL komplettiert. Es besteht aus Absorberplatten aus Stahl und strahlungsresistente Quarzfibern. Die Auslesung erfolgt durch konventionelle Photoelektronenvervielfacher, da die magnetische Flussdichte viel kleiner als im zentralen Bereich ist.

Magnetspule

CMS hat ein supraleitendes Magnetsolenoid. Es liefert ein uniformes Magnetfeld mit 3.8 T bei einer Betriebstemperatur von 4.5 K, mit einer gespeicherten Energie von 2.5 GJ und einem Nominalstrom von 19000 A.

Supraleiter: Al-verstärkte Nb-Ti Einzelleiter in Kupfer.

Zusammenbau der Magnetspule

Magnet Test and Cosmic Challenge

In der CMS-Montagehalle an der Oberfläche durchgeführt.

Myonsystem

Drei verschiedene Detektortypen sowohl für Präzisionsmessungen (DT, CSC) als auch zum Triggern (RPC, DT, CSC)

ÖPG, Sep. 2008

Installation der Endkappen

12. Dez. 2006

9. Jan. 2007

ÖPG, Sep. 2008

Installation des zentralen Hadronkalorimeters

Installation des Trackers

Installation des Pixeldetektors

Installation des Strahlrohres

TRIGGER

TRACKER

Der Tracker aus Silizium dient zur präzisen Messung

der Bahnen und Impulse elektrisch geladener Teilchen.

ÖSTERREICH BEI CMS

Das Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften gehört zu den Gründungsmitgliedern von CMS.

Die österreichische CMS-Gruppe hat etwa 30 Mitarbeiter und besteht aus Physikern, Ingenieuren, Technikern und Studenten. Ihre Hauptaktivitäten liegen auf den Gebieten des Triggers, des Trackers und der Physikanalyse.

Im LHC finden pro Sekunde bis zu einer Milliarde Proton-Kollisionen statt. Der Trigger dient dazu, aus diesen mit Hilfe speziell entwickelter schneller, programmierbarer Elektronik und einer Computerfarm nur die interessantesten für die Datenanalyse auszuwählen. Alle anderen Ereignisse werden verworfen.

Die Gruppe ist verantwortlich für das Design und den Bau des globalen Triggers, des globalen Myontriggers, der zentralen Triggersteuerung und des zentralen regionalen Myontriggers. Ohne den globalen Trigger könnte CMS kein einziges Ereignis aufzeichnen, und ohne den Myontrigger könnte zum Beispiel kein in Myonen zerfallendes Higgsteilchen gefunden werden! Die Gruppe hat auch die Verantwortung über den Trigger Supervisor, ein Softwaresystem, das die Konfiguration und den Betrieb

des gesamten CMS-Triggers koordiniert.

Er ermöglicht die Bestimmung von Spurpunkten mit einer Genäuigkeit von einem Hundertstel Millimeter.

Die Gruppe koordiniert die Qualitätskontrolle der Siliziumsensoren und die Produktion der Endkappenmodule. Sie produzierte alle Module eines der Endkappenringe unter Einhaltung engster mechanischer Toleranzen. Fünfhunderttausend elektrische Verbindungen zwischen Sensoren und Ausleseelektronik wurden in Wien hergestellt und geprüft! Für den Pixeldetektor, den innersten Teil des Trackers, wurden von der Gruppe Bauteile für die Datenübertragung und die Ausleseelektronik entwickelt.

Wirkungsquerschnitte und Raten

Wirkungsquerschnitte für verschiedene Prozesse variieren über viele Größenordnungen

- inelastisch: 10⁹ Hz • W → ℓv: 100 Hz
- tī: 10 Hz
- Higgs (100 GeV): 0,1 Hz
- Higgs (600 GeV): 0,01 Hz

Trigger

Eigenschaften der gemessenen Triggerobjekte Wahl der Triggerbedingungen

Triggerobjekte (Kandidaten):e/γ, μ, Hadronjets, τ-Jets,
fehlende Energie, Gesamtenergie etc.

Triggerbedingungen: gemäß physikalischen und technischen Prioritäten

CMS 2-Stufen-Trigger

Level-1 Trigger

Makrogranulare Information aus Kalorimetern und Müonsystem (e, μ , Jets, $E_T^{missing}$) Schwellwert- und Topologiebedingungen möglich Entscheidungszeit: 3,2 μ s Eingangsrate: 40 MHz Ausgangsrate: bis zu 100 kHz Speziell entwickelte Elektronik

High Level Trigger (mehrere Stufen)

Genauere Informationen aus Kalorimetern, Müonsystem und Tracker Schwellwert-, Topologie-, Massenbedingungen u.a. sowie Vergleiche mit anderen Detektoren möglich Entscheidungszeit: zwischen 10 ms und 1 s Eingangsrate: bis zu 100 kHz Ausgangsrate (Datenakquisition): O(100 Hz) Industrielle Prozessoren und Switching-Netzwerk

Österreichische Beiträge zum Trigger

Entscheidung (Level-1 Accept):

Analysiert jedes Ereignis, alle 25 ns, und entscheidet, ob es verworfen wird oder zum HLT geschickt wird. Das L1A-Signal wird zu den Subsystemen geschickt.

Triggermenü:

Je 128 Physikalgorithmen und 64 technische Trigger möglich.

Triggersteuerung (Trigger Control System):

Je nach Zustand der Subsysteme oder der Datenakquisition werden Trigger inhibiert bzw. es werden Triggerregeln angewandt.

Globaler Myontrigger

DR/CSC/RPC: kombiniert im Globalen Myontrigger

Algorithmen optimiert (kein einfaches AND/OR, sondern auch Geometrie und Qualität der Spuren berücksichtigt) zum Erreichen von :

- hoher Effizienz
- vernünftige Triggerraten
- Unterdrückung von "Geistern"

Optimalkombination hohe Effizienz, kleine Rate

Regionaler Myontrigger (DT Track Finder)

Der Trigger basiert auf Korrelation von kompatiblen Spursegmenten, die zum Vertex zeigen. Er funktioniert nach einem Extrpolationsalgorithmus.. Maximal 4 Detektorebenen werden für die azimuthale Projektion (transversal zur Magnetfeldrichtung) und drei fü die longitudinale (entlang der Strahlachse). Wenn möglich, werden Spurkandidaten aus beiden Projektionen zu einer Spur zusammengeführt. Ortskoordinaten und Impulse werden ebenfalls bestimmt.

DTTF in der CMS-Elektronikkaverne

Trackerkonstruktion:

Koordinations- und Testzentrum für Qualitätskontrolle der Si-Sensoren Koordination der Modulproduktion für die Tracker Endcaps (TEC) Produktion und Test von zwei TEC-Ring-Modulen (Bonding, Montage)

Trackerelektronik:

Design und Qualitätskontrolle von 14000 Analog-Optohybriden, produziert bei Kapsch. Tests von Readoutchips in Teststrahlen am PSI und bei DESY.

Pixeloptohybride: Technische Verantwortung

Pixelelektronik:

Design und Produktion von Frontend Drivers -1.6 Millionen Pixels pro Modul

Weitere österreichische Beiträge

Triggersoftware:

Level-1 Trigger Offline- und Online Software Monitoring-Software

Trackersoftware:

Spur- und Vertexrekonstruktionsalgorithmen B-tagging-Algorithmus Alignment

Vorbereitung für Physikanalyse: Top-Studien Supersymmetrie -> Resultate hoffentlich bald!

Higgs? Was kommt nach dem Standardmodell? Theory of Everything?

Higgs bei CMS

C.-E. Wulz

UPG, Sep. 2008

Supersymmetrie

Zu jedem Standardmodell-Teilchen gibt es supersymmetrische Partner.

SUSY hat zwei bestechende Eigenschaften:

- Drei Wechselwirkungen können bei hohen Energien vereint werden, d.h. die Stärken (α) werden gleich.
- Es gibt einen natürlichen Kandidaten für dunkle Materie, das leichteste Neutralino (χ_1^0).

Supersymmetrisches Ereignis am LHC

Supersymmetrische Teilchen können komplexe Signaturen durch Kaskadenzerfälle aufweisen, die zu Endzuständen mit Leptonen, Jets und fehlender Energie (zum Beispiel durch Neutralinos) führen.

Gravitation und Extra-Dimensionen

Gravitation scheint 10⁻³⁸ mal so schwach im Vergleich zur starken Wechselwirkung -> schwer vereinbar mit anderen Kräften! Mögliches Modell:

- Bekannte Teilchen leben im 3+1-dimensionalen Universum (Brane)
- Gravitation lebt in einem höherdimensionalen Universum (Bulk)
- Extra-Dimensionen sind aufgerollt mit Radius R

Graviton-Suche am LHC

Gravitonen, die vermutlich die Gravitation zwischen Teilchen mit Masse vermitteln, können sich ungehindert auch in den Extra-Dimensionen ausbreiten.

Mit der Energie des LHC sollte es möglich sein, WW von Teilchen in unserer Brane bei Abständen von ca. 10⁻¹⁵ m (Protondurchmesser) zu untersuchen. Diese Distanzen liegen vielleicht in der gleichen Größenordnung wie die Radien der aufgerollten Dimensionen.

Signal in den Detektoren: fehlende Energie! Diese kann aber auch von Neutrinos oder Neutralinos stammen, deshalb sind Modellberechnungen nötig.

Schwarze Löcher

Wenn die Gravitation bei kleinen Distanzen groß wird, kann der LHC auch (Mini-) Schwarze Löcher produzieren!

Sie sollten jedoch durch quantenmechanische Effekte sehr schnell verdampfen (Hawking-Strahlung), unter Erzeugung aller möglichen Standardmodellteilchen.

Danke

